Polymer Bulletin 7, 137-144 (1982) Polymer Bulletin
© Springer-Verlag 1982

Effect of Molecular Weight Heterodispersity
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Summary

The nonlinear, binary blending law of BOGUE has been generalized to
include a finite number of entangled species. Good agreement has been
observed between the ROUSE theory modified according to this law and linear
viscoelastic experiments on cis-1,4-polybutadiene melts and concentrated
solutions. The more difficult case of heterogeneity due to simultaneous
degradation and crosslinking can only be qualitatively accounted for.

Introduction

The ROUSE theory excells as a physical theory because it correlates
in molecular terms a single type of experiment: linear viscoelastic
response. This is an important result, since nonlinear theories neces-
sarily converge to the linear limit for small strains.

Recently, a modification of the ROUSE theory for entangled polymers
was proposed (ALVAREZ 1981), consisting of the introduction of two regimes
of relaxation times to account for motions of segments below and above the
critical entanglement length. The molecular-weight-dependence of each
regime was scaled to agree with known phenomenological relations. A
smooth transition between the two regimes was found to improve the fit of
theory and experiment for cis-1,4-polybutadiene (PB).

The question concerning the effect of molecular weight hetero-
dispersity on the linear response of entangled polymers remained
unanswered. Formal results from the ROUSE theory for a continuous distri-
bution of molecular weights below the critical entanglement molecular
weight M are well known (PETICOLAS 1963). No such study has been made for
entangleg polymers,

In this paper we simulate the effect of polydispersity in the ROUSE
theory by means of the nonlinear, binary blending law of BOGUE (1970),
which we have extended for a finite number of species. The ROUSE theory
modified according to this law exhibits the following features, in agree-
ment with experimental results: 1) the terminal region of the storage
modulus is shifted to lower frequency as suggested in the past (GRAESSLEY
1974), 2) the loss modulus is relatively insensitive to molecular weight
heterodispersity, 3) oscillatory first normal stress coefficients are
extremely sensitive to polydispersity, and 4) the weight-average appears
acceptable as the correlating molecular weight parameter for the zero-
shear viscosity.
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The general nonlinear blending law

Discrete molecular weight averages can be calculated according to the
general formula:
a
WM,

M = a1 YL (1)

a (a-1)
PIRAN

and the normalization condition:

1 = (2)

SW,
ivi
where wi is the weight fraction of the ith species and MOE Mn, MlE Mw’
etc. Knowledge of the averages up to a = i + 1, together with the
normalization condition (2) will fix the distribution of i species and their
weight fractions, without need of a distribution function,

The generalized MAXWELL model (BIRD 1977) gives for oscillatory shear
flow with w as the angular frequency:

G* (w) o1
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where n' is the real part and nN" the imaginary part of the complex visco-
sity, T is the time constant of each MAXWELL element, and H(T) is the
distribution function of T's. Additionally, the following limits can be
defined:

. T — x
n, = &33;’8 n'(w) —fOH(T)dT (5)
\P‘fo = Lim ”w(“’) =f°o°H(T)TdT (6)

where N, is referred to as the zero-shear viscosity and W? is the zero-
o
shear first normal displacement stress coefficient.

Thus, by specifying H(T), which is equivalent to specifying the
relaxation modulus G(t) of each MAXWELL element, the complete linear
viscoelastic response according to this model can be derived. Only
frequency dependent functions are considered in this paper; time dependent
functions will be given elsewhere,

A general nth-order law for the blending of g species, each with
weight fraction Wi, can be written

n 3 T n
@) - |2 ()
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where
B, = h(f), £ = - (8)
i ! q 1/q
i=1 i
Cob
and A, =— (9)
i Z
(o]

Co and Co are monomeric friction coefficients for the blend and for com-
b i
ponent i respectively. Tm is the maximum (or any convenient reference)
i
relaxation time for component i.
The requirement that the zero-shear viscosity of the blend no depends
b

only on the weight-average molecular weight Mw according to the law:

3.4

n, = AMW (10)
b
where A is a constant independent of molecular weight, places a restriction
on equation (9) as follows: 3.4 - n
Mw
T T (an
i

The cubic blending law (n = 3) has the advantage of reproducing the
experimentally observed concentration and molecular weight dependence of
the limits (5) and (6) (KURATA 1974), while the fourth order law would
imply, according to (11), that the longest relaxation time of the blend
would be larger than the longest relaxation time of the highest molecular
weight component, which would be unreasonable. A ternary blend was found
to improve the agreement between theory and experiment, over the binary
blend.

Results

Measurements of storage G' and loss G" modulus in the eccentric rot-
ating disc instrument INSTRON 3250, for cis-1,4~polybutadiene (PB) melts
and 24 % w/w solutions of PB in n~tetradecane, reduced to 298 K and to
the melt density, are presented in Figures 1 and 2. The dynamic viscosity,
the loss factor and the first normal displacement stress coefficient
obtained by the exact equivalences:

G" Gll
n' =T, tan 6 =?, Yy

d

-
1w (12)

are shown in Figures 3 and 4. The dashed lines in these figures are
results from the ROUSE theory modified for entanglements (ALVAREZ 1981)
with a single molecular weight equal to Mw of the PB melt (Mw = 488

kgmol_l). The solid lines were calculated according to equation (7) with
n = q = 3, where the g molecular weights and weight fractions were obtained
by matching the first g + 2 molecular weight averages, calculated by
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Figure 7. Zero-shear viscosity'u'.'o

and zero-shear first normal displacement
stress coefficient A versus weight-average
molecular weight for PB oils as in Fig. 5.
Dashed lines from equations (13)-(15),
solid lines according to linear and cubic

blending law, below and above MC' resp

resp.) is shown in Figure 5.
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means of equations (1) and
(2), with values obtained
by gel permeation chroma-
tography for the PB melt
M /M = 2.3).

w n

The master spectrum
h(£) was obtained for the
storage modulus of the
highest molecular weight
component according to the
modified ROUSE theory by
means of the third order
approximation of TSCHOEGL
(1971) and then refined
iteratively until the
error between the value
given by the ROUSE theory
and the recalculated value
according to equation (4),
was negligible.

Good agreement bet-
ween the polydisperse
theory and experiment is
observed in Figures 1-4,
except for the loss fac-
tor, Figure 4, which is a
very sensitive function,
and includes experimental
errors in both G' and G".

The dynamic viscosity
of three Newtonian PB cils

M = 1.5, 3 and 6 kgmol‘1

The dashed lines are results calculated from

the monodisperse ROUSE theory, with M = 3, 6 and 12, resp. and a monomeric
friction coefficient equal to one half of that employed for the PB melt

10 -1

(;o = 4.0 x 10 ~~ Nsm  for the PB melt).

The modification of the ROUSE

theory (ALVAREZ 1981), which implies that molecular segments below the cri-
tical entanglement molecular weight Mc are unaffected by the presence of the

network, predicts the observed smooth transition between the terminal and
rubber region of the viscoelastic spectrum, and, at low molecular weight,
Figure 5, it is also useful to explain the molecular weight dependence of

viscoelastic functions.

However, it is not possible with the present measu-

rements to reach high enough frequency, so that viscoelastic functions be-
come independent of molecular weight, as for the PB melt in Figures 1-4,
where the monomeric friction coeffcient was obtained from the high frequency
region, and the the molecular weight from low frequency measurements. The
storage modulus of the PB oil (Mn = 6) is given in Figure 6, and cannot be

fitted either by linear distributions according to Mn = 6, Mw = 13.8,... or

Mn =6, Mw = 24,..., although the dynamic viscosity correlates well with

M—Co as mentioned above.

The molecular weight distribution of this oil is

probably complex due to rapid, simultaneous degradation and crosslinking at
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room temperature,

Finally, the zero-shear viscosity and zero-shear first normal displace-
ment stress coefficient measured in cone-and-plate geometry (ALVAREZ 1982)
are plotted versus weight average molecular weight in Figure 7, for the PB
oils mentioned above, The normal stress data are, however, not strictly
Newtonian. The dashed lines were calculated according to the formulae
(ALVAREZ 1981)

22N  2.4e7%/Pe

cf b'N P
N, = 2 2 (13)
6T p=1 P
-p/p
and of 2b4N4 N p 4.8e e
d o e
MRl 3 1

o  36TKT p=1 p

with

M
p =— (15)
e MC

where fo is the bead friction ccefficient, b is the root-mean-square end-to-

end distance between beads at equilibrium, N is the number of beads and c is
the number of molecules per unit volume. The solid lines were calculated by
equations (5) and (6) for M = 12 and MW/Mn = 2.3, and equation (7) with

n = 1 below and n = 3 above MC.

It can be concluded that the heterogeneity correction presented here
contributes a great deal to the accurate prediction of the linear visco-
elastic properties of entangled polymers.
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